
Spiking Neural Controllers
for Pushing Objects Around

Răzvan V. Florian1,2

1 Center for Cognitive and Neural Studies (Coneural),
Str. Saturn nr. 24, 400504 Cluj-Napoca, Romania

florian@coneural.org
http://www.coneural.org/florian

2 Babeş-Bolyai University, Institute for Interdisciplinary Experimental Research,
Str. T. Laurian nr. 42, 400271 Cluj-Napoca, Romania

Abstract. We evolve spiking neural networks that implement a seek-
push-release drive for a simple simulated agent interacting with objects.
The evolved agents display minimally-cognitive behavior, by switching as
a function of context between the three sub-behaviors and by being able
to discriminate relative object size. The neural controllers have either
static synapses or synapses featuring spike-timing-dependent plasticity
(STDP). Both types of networks are able to solve the task with similar
efficacy, but networks with plastic synapses evolved faster. In the evolved
networks, plasticity plays a minor role during the interaction with the
environment and is used mostly to tune synapses when networks start
to function.

1 Introduction

Genuine, creative artificial intelligence can emerge only in embodied agents,
capable of cognitive development and learning by interacting with their environ-
ment [1]. Before the start of the learning process, the agents need to have some
innate (predefined) drives or reflexes that can induce the exploration of the en-
vironment. Otherwise, the agents might not do anything once emerged in their
environment, and learning would not be possible. In the experiments presented
in this paper, we evolve a basic drive for a simple simulated agent that is able to
interact with the objects in its environment. This drive could be used in future
research to bootstrap the ontogenetic cognitive development of the agent.

The agent is controlled by a spiking neural network [2,3]. Among classes of
neural network models amenable to large scale computer simulation, recurrent
spiking neural networks are an attractive choice for implementing control systems
for embodied artificial intelligent agents [4]. Spiking neural networks have more
computational power per neuron than other types of neural networks [5,6,7]. Sev-
eral studies [8,9,10,11] have shown that spiking neural networks achieve better
performance for the control of embodied agents than continuous time recurrent
neural networks or McCulloch-Pitts networks. More importantly, spiking neurons
have a closer resemblance to real neurons than other neural models, which al-
lows a bidirectional transfer of concepts and methodologies between neuroscience

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 570–581, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Spiking Neural Controllers for Pushing Objects Around 571

and artificial neural systems. Biological examples may suggest architectures and
learning mechanisms for artificial models that would improve their performance.
In the reverse direction, theories developed during the study of embodied artifi-
cial neural networks may lead to new concepts and explanations regarding the
activity of real neural networks [12].

Evolved spiking neural networks have been used in the last few years for the
control of simulated or real robots, but more rarely than other types of neural
networks [8,13,14,15,16,17,18,9,19,20,21,22,23,24,10,11,25,26,27]. Among previ-
ous evolutionary studies, only one explored the properties of a plastic spiking
neural network [18,9,19]. Very few studies used spiking neural controllers for
embodied agents that were not evolved, but were taught using other learning
methods [28,29,30,31,32].

This paper presents experiments where we evolved spiking neural networks
with static as well as with plastic synapses. These networks are one of the largest
spiking neural networks evolved to date. The evolved controllers display inter-
esting minimally-cognitive capabilities, being able to discriminate relative object
size.

2 The Agent, Its Environment and Its Task

2.1 The Simulator

The agent and its environment were simulated using Thyrix, an open source
simulator specifically designed for evolutionary and developmental experiments
for embodied artificial intelligence research [33]. The simulator provides a two-
dimensional environment with simplified, quasi-static (Aristotelian) mechan-
ics, and supports collision detection and resolution between the objects in the
environment.

2.2 The Agent’s Morphology

The agent’s morphology was chosen as the simplest one that allows the agent to
push the circular objects in its environment without slipping of objects on the
surface of the agent. Slipping may appear, for example, if a circle pushes another
circle, and the pushing force is not positioned exactly on the line connecting the
centers of the two circles.

We wanted maximum simplicity both for economy (in order to need less com-
puting time for evolution) and for having few degrees of freedom, which allows a
simpler analysis of the behavior of the agent. However, we have tried to respect
the principle of ecological balance [34] in the design of the agent’s morphology
and sensorimotor capabilities.

Thus, the agent is composed of two circles, connected by a variable length link.
The link is “virtual”, in the sense that it provides a force that keeps the two
circles together, but it does not interact with other objects in the environment,
i.e. external objects can pass through it without contact. With this morphology,
the agent can easily push other circles in its environment, by keeping them

572 R.V. Florian

Variable length, elastic link

Visual sensor

Tactile sensor

Motor force

b)a)

Fig. 1. a) The agent’s morphology. b) The agent pushing a ball.

between its two body-circles, without the need of balancing them to prevent
slipping. The agent was named Spherus and the code that defines it is available
in the open source Thyrix simulator (http://www.thyrix.com).

2.3 The Agent’s Effectors and Sensors

The agent can apply forces to each of its two body-circles. The forces originate
from the center of the circles and are perpendicular to the link connecting them.
Two effectors correspond to each of the two body-circles, one commanding a
forward-pushing force, and one commanding a backward-pushing force. These
effectors allow thus the agent to move backward or forward, to rotate in place,
and, in general, to move within its environment. A fifth effector commands the
length of the virtual link connecting the two body-circles, between zero and a
maximum length. If the actual length of the link is different from the commanded
length, an elastic force (proportional with the difference between the desired and
actual length) acts on the link, driving it to the desired length.

The agent has contact sensors equally distributed on the surface of its two
body-circles (8 contact sensors per circle, spanning a 45◦ angle each). The acti-
vation of the sensors is proportional to the sum of the magnitudes of the contact
forces acting on the corresponding surface segment, up to a saturation value.
Each circle also has 7 visual sensors, centered around the “forward” direction.
Each sensor has a 15◦ view angle, originating from the center of the circle. The
activation of the sensors is proportional to the fraction of the view angle covered
by external objects. The range of the visual sensors is infinite.

The agent also has proprioceptive sensors corresponding to the effectors. Each
body-circle has two velocity sensors, measuring the velocity in the forward and
backward directions, respectively. The sensors saturate at a value correspond-
ing to the effect of the maximum motor force that can be commanded by the
effectors. The agent also has a proprioceptive sensor that measures the actual
length of the link connecting the two body-circles, that saturates at the maxi-
mum length that can be commanded by the link effector.

Thus, the agent has a total of 5 effectors and 35 sensors (16 contact sensors,
14 visual sensors, and 5 proprioceptive ones). Each sensor or effector can have
an activation between 0 and 1.

http://www.thyrix.com

Spiking Neural Controllers for Pushing Objects Around 573

2.4 The Environment

In the experiments presented in this paper, the environment consisted of one
agent and 6 circles (“balls”) that the agent can move around. The spatial ex-
tension of the environment was not limited. The balls have variable radiuses
(varying linearly between r1 = 0.06 m and r2 = 0.26 m), comparable in size to
the radius of the agent’s body-circles (0.1 m).

During each trial, the agent and the balls were positioned randomly in the
environment, without contact, in a rectangular perimeter of 6 m by 4 m.

2.5 The Task

The task of the agent was to move alternatively each of the balls in its envi-
ronment, on a distance as long as possible, in limited time (100 s of simulated
time). More specifically, the fitness of each agent was computed as the sum of
the distances on which each ball was moved, but with a threshold of dt = 2 m
for each ball. Thus, the agent had to move all balls, instead of just detecting one
ball and pushing it indefinitely. The sum of distances may thus range between 0
and 6 dt = 12 m.

This task was considered to implement a seek-push-release drive, that might
be used in future experiments to bootstrap more complex behaviors, such as ar-
ranging the balls in a particular pattern, sorting the balls by size, or categorizing
different kinds of objects.

If the agent moves in straight line at the maximum speed corresponding to the
maximum forces it can produce, pushing the six balls for equal time, and if we
neglect the time needed for taking curves, seeking the balls, switching between
balls, the distance that it may cover in the limited time is 55.945 m. Given the
existence of distances between balls, the fact that the speed is lower when taking
curves, that the agent has to release the balls when switching them, we can see
that the task is relatively difficult. From the perspective of an external observer,
it may require the coordination of the motor effectors for attaining high speeds,
the evaluation of the distance or time spent pushing a certain ball, and eventually
the memorization of either objects’ sizes or positions, that prevents the repeated
pushing of the same balls.

To determine the fitness of a particular individual, we have averaged its per-
formance on three trials, with random initial configurations of the balls.

3 The Controller

3.1 The Spiking Neural Network

The controller of the agent consisted of a recurrent spiking neural network. The
controller had as input the activations of the agent’s sensors, and as output the
activations of the agent’s effectors. The network was implemented by a fast,
event-driven spiking neural simulator, inspired by Neocortex [35].

The network consisted of leaky integrate-and-fire neurons [3] with a resting
and reset potential of -65 mV, a threshold potential of -40 mV, a resistance of

574 R.V. Florian

10 MΩ and a decay time constant of 10 ms. The network was fully connected:
all neurons were connected to all neurons in the network, except input neurons,
which had only efferent connections; there were no self-connections. There were
50 hidden neurons, in addition to the 70 input neurons and the 5 output neurons.
The network was thus composed of 125 neurons and 6875 synapses.

The simulator used discrete time with a resolution of 1 ms. At each time
step, only the neurons that received spikes were updated (hence the event driven
nature of the updating of the network). If the updated neurons fired, their spikes
were stored in a list. This spike list was used during the next time step to update
the affected postsynaptic neurons. Thus, the spikes propagated within an axonal
delay of one time step.

3.2 Spike-Timing-Dependent Plasticity

During some of the experiments, the neural network featured spike-timing-depen-
dent plasticity (STDP). STDP is a phenomenon that was experimentally ob-
served in biological neural systems [36,37,38,39]. The changes of the synapse
efficacies depend on the relative timing between the postsynaptic and presynap-
tic spikes. The synapse is strengthened if the postsynaptic spike occurs shortly
after the presynaptic neuron fires, and is weakened if the sequence of spikes is
reversed, thus enforcing causality. Notably, the direction of the change depends
critically on the relative timing.

We have modeled STDP following the method of [40]. The values of the pa-
rameters used were A+ = 0.005, A− = 1.05 A+, and τ+ = τ− = 50 ms. Fol-
lowing [9], we implemented directional damping for the synapse efficacies. The
synapse efficacies w, which were variable due to STDP, were limited to the in-
terval [0, wmax], where wmax could be either positive or negative, and was a
genetically determined maximum (in absolute value) efficacy.

4 The Agent-Controller Interface

In interfacing a spiking neural controller with an embodied agent, a conversion
of the analog input to binary spikes and then of spikes to an analog output has
to be performed. Following [9], the analog values of the sensor activations were
converted to a spike train using a Poisson process with a firing rate proportional
to the activation. The maximum firing rate of the input neurons was set to
100 Hz.

The spikes of the motor neurons were converted to an analog value by a
leaky integrator of time constant τ = 10 ms. The maximum value of the effector
activation, 1, corresponded to a firing rate of the motor neuron of 100 Hz.

Each sensor of the agent, of activation s, 0 ≤ s ≤ 1, drove two input spiking
neurons, one being fed with activation s and the other with activation 1−s. Thus,
both the activation of the sensor and its reciprocal was fed to the network. The
reason of this duplication of the sensory signal in the spiking neural network
is twofold. First, this allows the network to be active even in the absence of

Spiking Neural Controllers for Pushing Objects Around 575

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

Generations

Fi
tn

es
s

Static synapses

STDP

Fig. 2. Best fitness of the networks from a population over generations

sensory input. For example, if the agent is in a position where nothing activates
its sensors (there is no object in its visual range, no tactile contact etc.), there
must be however some activity in the neural network, in order for the effectors
to be activated and the agent to orientate to stimuli. Second, this mechanism
implies that the total input of the network is approximately constant in time (the
number of spikes that are fed to the network by the input). This simplifies the
selection of the network’s parameters and the analysis of the network’s behavior.

5 The Evolutionary Algorithm

The parameters determined by evolution were the values of the synaptic efficacies
w (in the non-plastic case), or the values of the maximum (in absolute value)
synaptic efficacies wmax (in the STDP case). The genome directly encoded these
values for the 6875 synapses. We used a standard evolutionary algorithm, with
a population of 80 individuals, truncation selection (the top 25 % individuals
reproduced) and elitism. 10 % of the offspring resulted from mating with single
cut crossover. Mutation was applied uniformly to all genes.

6 Results

Networks with both static and plastic synapses evolved to solve the required
task, with the fitness of the best individuals reaching a plateau at about 11.3,
very close to the maximum possible of 12 (see Fig. 2). Plastic networks evolved
faster, in terms of generations, than networks with static synapses. However,
the simulation of plastic networks required a higher computational effort. Only
one evolution has been performed for each case (STDP, and respectively static
synapses), because of the required computing time (a few weeks on a stand-
ard PC).

576 R.V. Florian

7 Behavioral Analysis

The agents controlled by the evolved networks seek the closest ball, push it for a
while, then release it and seek another ball. They use visual information for seek-
ing the balls: when no ball is pushed, and a ball enters the visual field, the agents
go towards it. If there is no ball in the visual field, the agents rotate in circles
in order to visually scan the environment. When they push a ball, they keep the
link that unite their two body-circles extended, in order to have most of their
visual field not occupied by the pushed ball. However, the link is not extended
to maximum, for not letting the ball pass trough it. The agents also move circu-
larly when pushing a ball, in order to seek other balls in the environment. When
another ball enters the visual field, they go towards it while still pushing the first
ball, and release it only when they are close to the new ball. Release is performed
by extending the link. Again, they use visual information in order to seek new
balls while pushing one. For example, if a single ball is placed in the environment,
they keep pushing it in circles indefinitely, without releasing it. The behavior of
the evolved agents is thus relatively complex, from an external observer per-
spective, requiring the composition of three sub-behaviors: seek, push, release.
Although the agents may come more than once to push a particular object, their
strategy leads them to alternatively push, in most cases, all objects in their
environment. A movie displaying the behavior of an evolved agent is avail-
able online at http://coneural.org/reports/object pushing/object
pushing.avi.

The balls that the agents push have the same density, and thus larger balls are
heavier. Since the environment obeys a quasistatic physics, velocity is inversely
proportional to mass, for a given force. In order to optimize their behavior for
solving the task, the agents have to push the balls as hard as possible, and,
for constant (maximum) forces, they have to push larger (heavier) balls longer
periods of time than the smaller ones, to move them on similar distances dur-
ing a limited time interval. It is interesting that this behavior — pushing for
longer periods the larger balls — actually emerges during evolution. On av-
erage, the balls from the set encountered during evolution are pushed on the
same distances. This is illustrated in Fig. 3 a). We tried to uncover the mech-
anisms that determine this behavior by subjecting the evolved agents to sev-
eral “psychological” experiments, where the reality they were accustomed to
(through evolution) was modified. More precisely, we modified systematically
the radiuses and/or the densities of the balls. It can be seen (Fig. 3) that the
average distance on which a ball is pushed does not depend exclusively on its
characteristics, such as radius or mass, but on the characteristics of the whole
set of balls. The average distances do not depend exclusively on the geometry of
the environment, but also on the interaction of the agent with the balls. There
is no particular parameter on the basis of which the agent estimates for how
long it should push a ball, but the constance of the average distances emerges
as a property of the complex dynamical system constituted by the agent, its
environment, and the neural network, a property which is found and selected
by the evolution. However, an external observer could argue that the evolved

http://coneural.org/reports/object_pushing/object_
pushing.avi

Spiking Neural Controllers for Pushing Objects Around 577

a) b) c) d) e) f)

Av
er

ag
e

di
st

an
ce

pu
sh

ed
 (m

)
Av

er
ag

e
tim

e
pu

sh
ed

 (s
)

0

10

20

30

0

20

40

60

80
Ball 1
Ball 2
Ball 3

Ball 4
Ball 5
Ball 6

g)

Fig. 3. Average (over 500 trials) and standard deviation of the average time and
of the average distance a ball is pushed during a trial. a) The balls are like dur-
ing the evolution, having radii varying linearly between r1 and r2. b) First three
balls have radius r1 and the other three have radius r2. c)-e) The balls have equal
radii: c) r1; d) ra = (r1 + r2)/2; e) r2. f) The balls have equal radii ra but variable
masses (corresponding to radii varying linearly between r1 and r2, at default den-
sity). g) The balls have equal masses (corresponding to a radius ra at default density)
but radii varying linearly between r1 and r2. The relatively high variability of the
displayed quantities is due by the variability of initial positions of the balls in the
environment.

agents discriminate relative object size, by pushing larger objects for longer
periods.

8 The Role of Plasticity

The evolved networks featuring STDP had a performance similar to the one of
networks with static synapses, but evolved slightly faster. The improvement in
evolution speed observed in plastic networks could be explained by a number
of factors, including random exploration (smoothing) of the fitness landscape
in the surroundings of individuals [41]. It is interesting to investigate whether
plasticity also has an active role in determining the networks’ performance. We
have thus freezed the plasticity in networks evolved with STDP, either completely
or after 1 s of activity (i.e., the first 1% of the duration of a trial). The results are
presented in Fig. 4: freezing completely the plasticity leads to an important (80%)
loss of performance, while freezing it after a short time that allows plasticity to
act reduces performance only with about 33%. This means that most of the
role of STDP in our evolved networks consists in tuning synapses to quasi-

578 R.V. Florian

Fi
tn

es
s

a) b) c) d)
0

2

4

6

8

10

12

e)

Fig. 4. Average fitness (over 500 trials) and standard deviation: a) Best network
evolved with static synapses. b) Best network evolved with STDP. c) Best network
evolved with STDP; plasticity is freezed after 1 s from the beginning of each trial. d)
Best network evolved with STDP; plasticity is completely freezed. e) Random networks,
not subjected to evolution.

stable, adaptive strengths, rather than contributing actively to the network’s
dynamics.

9 Conclusion

We have successfully evolved fully connected spiking neural networks consisting
of 125 neurons and 6875 synapses, that allow a simple agent to alternatively
seek, push and then release the 6 balls in its environment. This is one of the
largest spiking neural network successfully evolved for the control of an embodied
agent reported in the literature. This was possible because we used a fast agent-
environment simulator especially designed for evolutionary and developmental
experiments, and a fast event-driven neural network simulator. The evolved
agents display interesting, minimally-cognitive behavior [42,43], by switching as a
function of context between the three sub-behaviors (seek, push, release) and by
being able to discriminate relative object size. We evolved networks with either
static synapses or synapses featuring STDP. Plasticity proved to play a minor
role in the dynamics of the evolved networks, contributing mostly to speeding
up the evolutionary process and to tuning the synapses at the beginning of the
networks’ activity.

The evolved drive could be used in future experiments to bootstrap the devel-
opment of more complex behaviors, by using, for example, reinforcement learning
[32] to shape further the agent’s behavior.

Acknowledgements

This work was partly supported by Arxia SRL and by a grant of the Romanian
Government (MEdC-ANCS). We thank to Raul Mureşan for providing the code
of the Neocortex spiking neural network simulator and for useful feedback.

Spiking Neural Controllers for Pushing Objects Around 579

References

1. Florian, R.V.: Autonomous artificial intelligent agents. Technical Report Coneural-
03-01, Center for Cognitive and Neural Studies, Cluj, Romania (2003)

2. Maas, W., Bishop, C.M., eds.: Pulsed neural networks. MIT Press, Cambridge,
MA (1999)

3. Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press,
Cambridge, UK (2002)

4. Florian, R.V.: Biologically inspired neural networks for the control of embodied
agents. Technical Report Coneural-03-03, Center for Cognitive and Neural Studies,
Cluj, Romania (2003)

5. DasGupta, B., Schnitger, G.: Analog versus discrete neural networks. Neural
Computation 8 (1996) 805–818

6. Maass, W., Schnitger, G., Sontag, E.D.: A comparison of the computational power
of sigmoid and boolean threshold circuits. In Roychowdhury, V.P., Siu, K., Orlit-
sky, A., eds.: Theoretical Advances in Neural Computation and Learning. Kluwer
Academic Publishers (1994) 127–151

7. Maas, W.: Networks of spiking neurons: the third generation of neural network
models. Neural Networks 10 (1997) 1659–1671

8. Floreano, D., Mattiussi, C.: Evolution of spiking neural controllers for autonomous
vision-based robots. In Gomi, T., ed.: Evolutionary Robotics IV. Springer-Verlag,
Berlin (2001)

9. Di Paolo, E.A.: Spike timing dependent plasticity for evolved robots. Adaptive
Behavior 10 (2002) 243–263

10. Saggie, K., Keinan, A., Ruppin, E.: Solving a delayed response task with spiking
and McCulloch-Pitts agents. In: Advances in Artificial Life: 7th European Con-
ference, ECAL 2003 Dortmund, Germany, September 14-17, 2003. Volume 2801 of
Lecture Notes in Computer Science. Springer, Berlin / Heidelberg (2003)

11. Saggie-Wexler, K., Keinan, A., Ruppin, E.: Neural processing of counting in evolved
spiking and mcculloch-pitts agents. Artificial Life 12(1) (2005) 1–16

12. Ruppin, E.: Evolutionary embodied agents: A neuroscience perspective. Nature
Reviews Neuroscience 3 (2002) 132–142

13. Floreano, D., Schoeni, N., Caprari, G., Blynel, J.: Evolutionary bits’n’spikes. In
Standish, R.K., Bedau, M.A., Abbass, H.A., eds.: Artificial Life VIII: Proceedings
of the Eight International Conference on Artificial Life. MIT Press, Boston, MA
(2002)

14. Floreano, D., Zufferey, J.C., Mattiussi, C.: Evolving spiking neurons from wheels
to wings. Proceedings of the 3rd International Symposium on Human and Artificial
Intelligence Systems, Fukui, Japan (2002)

15. French, R.L.B., Damper, R.I.: Evolving a nervous system of spiking neurons for a
behaving robot. In: Proceedings of Genetic and Evolutionary Computation Con-
ference (GECCO 2001), San Francisco, CA (2001) 1099–1106

16. French, R.L.B., Damper, R.I.: Evolution of a circuit of spiking neurons for photo-
taxis in a Braitenberg vehicle. In Hallam, B., Floreano, D., Hallam, J., Hayes, G.,
Meyer, J.A., eds.: From animals to animats 7: Proceedings of the Seventh Inter-
national Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge,
MA (2002) 335–344

17. Damper, R.I., French, R.L.B.: Evolving spiking neuron controllers for phototaxis
and phonotaxis. In Raidl, G., ed.: Applications of Evolutionary Computation,
EvoWorkshops 2003. Volume 2611 of Lecture Notes in Computer Science. Springer,
Berlin (2003) 616–625

580 R.V. Florian

18. Di Paolo, E.A.: Evolving spike-timing dependent plasticity for robot control. EP-
SRC/BBSRC International Workshop: Biologically-inspired Robotics, The Legacy
of W. Grey Walter, WGW’2002. HP Labs, Bristol, 14 - 16 August 2002 (2002)

19. Di Paolo, E.A.: Evolving spike-timing dependent plasticity for single-trial learning
in robots. Philosophical Transactions of the Royal Society A 361 (2003) 2299–2319

20. Roggen, D., Hofmann, S., Thoma, Y., Floreano, D.: Hardware spiking neural
network with run-time reconfigurable connectivity in an autonomous robot. In:
2003 NASA/DoD Conference on Evolvable Hardware (EH’03). (2003) 199

21. Van Leeuwen, M., Vreeken, J., Koopman, A.: Evolving vision-based navigation
on wheeled robots. Institute for Information and Computing Sciences, Utrecht
University (2003)

22. Katada, Y., Ohkura, K., Ueda, K.: Artificial evolution of pulsed neural networks
on the motion pattern classification system. Proceedings of the 2003 IEEE Inter-
national Symposium on Computational Intelligence in Robotics and Automation
(CIRA), July 16 - 20, 2003, Kobe, Japan (2003) 318–323

23. Katada, Y., Ohkura, K., Ueda, K.: An approach to evolutionary robotics using a
genetic algorithm with a variable mutation rate strategy. In: Proceedings of The 8th
International Conference on Parallel Problem Solving from Nature (PPSN VIII).
(2004) 952–961

24. Soula, H., Beslon, G., J.Favrel: Evolving spiking neural nets to control an an-
imat. In: Proceedings of International Conference of Artificial Neural Networks
and Genetic Algorithm 2003 - Roanne, France. (2003)

25. Hagras, H., Pounds-Cornish, A., Colley, M., Callaghan, V., Clarke, G.: Evolving
spiking neural network controllers for autonomous robots. In: Proceedings of the
2004 IEEE International Conference on Robotics and Automation, New Orleans,
USA. (2004)

26. Federici, D.: A regenerating spiking neural network. Neural Networks 18(5–6)
(2005) 746–754

27. Federici, D.: Evolving developing spiking neural networks. In: Proceedings of CEC
2005 - IEEE Congress on Evolutionary Computation. (2005)

28. Damper, R., Scutt, T.: Biologically-motivated neural learning in situated systems.
In: Proceedings of the 1998 IEEE International Symposium on Circuits and Sys-
tems (ISCAS ’98). (1998)

29. Damper, R., French, R.L.B., Scutt, T.: Arbib: An autonomous robot based on
inspirations from biology. Robotics and Autonomous Systems 31(4) (2000) 247–
274

30. Soula, H., Alwan, A., Beslon, G.: Obstacle avoidance learning in a spiking neural
network. In: Last Minute Results of Simulation of Adaptive Behavior, Los Angeles,
CA (2004)

31. Soula, H., Alwan, A., Beslon, G.: Learning at the edge of chaos: Temporal coupling
of spiking neuron controller of autonomous robotic. In: Proceedings of AAAI Spring
Symposia on Developmental Robotics, Stanford, CA (2005)

32. Florian, R.V.: A reinforcement learning algorithm for spiking neural networks. In
Zaharie, D., Petcu, D., Negru, V., Jebelean, T., Ciobanu, G., Cicortaş, A., Abra-
ham, A., Paprzycki, M., eds.: Proceedings of the Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005),
IEEE Computer Society (2005) 299–306

33. Florian, R.V.: Thyrix: A simulator for articulated agents capable of manipulating
objects. Technical Report Coneural-03-02, Center for Cognitive and Neural Studies,
Cluj, Romania (2003)

Spiking Neural Controllers for Pushing Objects Around 581

34. Pfeifer, R., Scheier, C.: Understanding intelligence. MIT Press, Cambridge, MA
(1999)

35. Mureşan, R.C., Ignat, I.: The “Neocortex” neural simulator: A modern design. In-
ternational Conference on Intelligent Engineering Systems, September 19-21, 2004,
Cluj-Napoca, Romania (2004)

36. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic ef-
ficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297) (1997)
213–215

37. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons:
Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal
of Neuroscience 18(24) (1998) 10464–10472

38. Bi, G.Q.: Spatiotemporal specificity of synaptic plasticity: cellular rules and mech-
anisms. Biological Cybernetics 87 (2002) 319–332

39. Dan, Y., Poo, M.M.: Spike timing-dependent plasticity of neural circuits. Neuron
44 (2004) 23–30

40. Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-
timing-dependent synaptic plasticity. Nature Neuroscience 3 (2000) 919–926

41. Turney, P.: Myths and legends of the Baldwin effect. Proceedings of the Work-
shop on Evolutionary Computing and Machine Learning at the 13th International
Conference on Machine Learning (ICML-96), Bari, Italy (1996) 135–142

42. Beer, R.: Toward the evolution of dynamical neural networks for minimally cog-
nitive behavior. In Maes, P., Mataric, M., Meyer, J., Pollack, J., Wilson, S., eds.:
From animals to animats 4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior. Volume 421–429. MIT Press, Cambridge, MA
(1996)

43. Slocum, A.C., Downey, D.C., Beer, R.D.: Further experiments in the evolution
of minimally cognitive behavior: From perceiving affordances to selective atten-
tion. In Meyer, J.A., Berthoz, A., Floreano, D., Roitblat, H.L., Wilson, S.W., eds.:
From animals to animats 6: Proceedings of the Sixth International Conference on
Simulation of Adaptive Behavior. MIT Press, Cambridge, MA (2000) 430–439

	Introduction
	The Agent, Its Environment and Its Task
	The Simulator
	The Agent's Morphology
	The Agent's Effectors and Sensors
	The Environment
	The Task

	The Controller
	The Spiking Neural Network
	Spike-Timing-Dependent Plasticity

	The Agent-Controller Interface
	The Evolutionary Algorithm
	Results
	Behavioral Analysis
	The Role of Plasticity
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

