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Abstract. The tempotron is a model of supervised learning that allows
a spiking neuron to discriminate between different categories of spike
trains, by firing or not as function of the category. We show that tem-
potron learning is quasi-equivalent to an application for a specific prob-
lem of a previously proposed, more general and biologically plausible,
supervised learning rule (ReSuMe). Moreover, we show through simula-
tions that by using ReSuMe one can train neurons to categorize spike
trains not only by firing or not, but also by firing given spike trains, in
contrast to the original tempotron proposal.
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1 Introduction

The tempotron has been recently proposed as a “new, biologically plausible su-
pervised synaptic learning rule that enables neurons to efficiently learn a broad
range of decision rules, even when information is embedded in the spatiotem-
poral structure of spike patterns rather than in mean firing rates” [1]. A few
other supervised rules for spiking neurons have been previously proposed (for a
review, see [2]). Here we show that a particularization of ReSuMe, one of those
rules [3,4,5], is quasi-equivalent to the tempotron. Moreover, ReSuMe allows the
training of tempotrons that are able to fire specific spike patterns in response to
each input category.

2 The Tempotron

The tempotron learning rule [1] can be applied to a spiking neuron driven
by synaptic afferents. The learning rule modifies the efficacies of the afferent
synapses such that the trained neuron emits one spike when presented with in-
puts corresponding to one category and no spike when the inputs correspond
to another category. The tempotron setup assumes that, before being presented
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with an input spike train, the neuron’s potential is at rest, and that after the
neuron emits a spike in response to an input pattern all other incoming spikes
are shunted and have no effect on the neuron. Thus, even if the neuron would fire
more than one spike, the spikes following the first one are artificially eliminated.

The subthreshold membrane voltage u of the trained neuron is modeled as a
sum of postsynaptic potentials:

u(t) = u0 +
∑

i

wi

∑
tf
i <t

ε(t− tfi ), (1)

where u0 is the resting potential, wi is the synaptic efficacy of synapse i, and
ε(t− tfi ) describes the form of the postsynaptic potential induced in the neuron
by a spike at tfi received from neuron i. The first sum runs over all presynaptic
neurons, and the second one runs over all spikes of neuron i prior to t. When u
overcomes the firing threshold θ, the neuron emits a spike.

Tempotron learning minimizes the following cost function, for each input
pattern [1]:

C =


θ − umax, if umax < θ and the neuron should fire for this pattern,
umax − θ, if the neuron fired (umax ≥ θ) and it should have been silent,
0, otherwise,

(2)
where umax = u(tmax) is the maximal value of the postsynaptic potential u, in
the case that the neuron did not fire. In the case that the neuron fired, umax is
the maximal value that u would have been reached if the neuron would have not
fired.

Applying the gradient descent method in the space of synaptic efficacies for
minimizing the above cost function leads to the tempotron learning rule [1]:

∆wi =


λ
∑

tf
i <tmax

ε(tmax − tfi ), if the neuron should fire but it did not,

−λ
∑

tf
i <tmax

ε(tmax − tfi ), if the neuron should not fire but it did,

0, otherwise,
(3)

where λ > 0 is the learning rate. During learning, synaptic changes ∆wi are
applied after each presentation of an input pattern.

It can be seen that the dynamics of this learning rule has little biological
plausibility, since: a) It requires the monitoring of the maximum of u; b) For
trials when the neuron fires while it should not, it requires, for computing tmax,
simulating a dynamics of the neuron that is different from the real one (since
it ignores that the neuron fired and the membrane potential was reset). The
setup also has little biological plausibility, since: a) While it assumes that the
precision of spike times in input patterns is important, it ignores the time when
the trained neuron fires. If the coding of information in the brain depends on
the precision of spike times, as experimental studies have suggested [6], then the
timing of the firing of both the afferents and the trained neurons should matter;



b) It is assumed that the trained neuron can fire either no spike or just one spike
per input pattern; c) It is assumed that learned input patterns are isolated from
other inputs and thus that the trained neuron is initially at rest, which is not
the case in the brain.

3 ReSuMe

The ReSuMe learning rule [3,4,5,7,8] also allows the supervised training of a
neuron and is defined by the following equation:

dwi(t)
dt

= λ [Φ̃(t)− Φ(t)]
[
a+

∫ ∞
0

W (s) Φi(t− s) ds
]
, (4)

where Φ̃(t) =
∑ñ

f=1 δ(t− t̃f ) is the target spike train to be learned by the neuron,
represented by a sum of Dirac pulses; Φ(t) =

∑n
f=1 δ(t− tf ) is the actual output

of the neuron; Φi(t) is the input spike train coming from synapse i, also a sum
of Dirac pulses; a is a constant; t̃f are the moments of spikes in the target spike
train and ñ their number; tf are the moments of spikes in the actual output
spike train and n their number; and W is a learning window that was originally
proposed to be W (s) = E(s) with

E(s) = A exp(−s/τE) (5)

where A and τE are positive constants. It can be seen that, after a learning trial,
the synaptic change is

∆wi = λ a (ñ− n) + λ
∑
t̃g

∑
tf
i≤t̃g

W (t̃g − tfi )− λ
∑
tg

∑
tf
i≤tg

W (tg − tfi ). (6)

4 Applying ReSuMe to the Tempotron Problem

By applying the ReSuMe rule to the tempotron setup (one target output spike
or none, one output spike at t1 or none), and if we note that for having one
output spike, regardless of its timing, it is the easiest to have it at t̃1 = tmax, if
the neuron did not fire, or at the actual time of firing t̃1 = t1, if it fires, we get:

∆wi =


λ a+ λ

∑
tf
i≤tmax

W (tmax − tfi ), if ñ = 1, n = 0,

−λ a− λ
∑

tf
i≤t1 W (t1 − tfi ), if ñ = 0, n = 1,

0, if ñ = n.

(7)

In the first and the lase case in the last equation, the ReSuMe learning rule is
equivalent to the tempotron learning rule for a = 0 and W (s) = ε(s). In the
second case, the learning rules can be considered equivalent if we note that, if
the trained neuron fires, the maximum of u, θ, is actually reached at the firing
time t1, and this is the closest approximation to tmax that can be made with



quantities locally available to the neuron. The postsynaptic potential ε can be
well approximated by the exponential E that was originally used for ReSuMe;
for example, for integrate-and-fire neurons with postsynaptic currents that are
Dirac pulses, ε(s) is exactly an exponential. Thus, the tempotron learning rule
can be considered a particular application of ReSuMe for a particular problem.

But ReSuMe is a more general and more biologically plausible learning rule,
since, in contrast to the tempotron: a) If the trained neuron is assumed to fire
in response to a pattern, one can not only teach it to fire, but also to fire
at particular moments, which is more biologically plausible and also permits a
finer control of the neuron’s behavior; b) It allows discriminating between more
than two input categories; c) It does not require monitoring the maximum of u;
d) It allows not only episodic learning but also online learning. Of course, the
biological plausibility of supervised learning rules for spiking neural networks
is limited by the constraint of providing a teaching signal for each considered
neuron.

Because the tempotron learning rule minimizes the cost function defined by
Eq. 2 and of the quasi-equivalence of ReSuMe with the tempotron learning rule
for the tempotron problem, ReSuMe, with W (s) = ε(s), is an optimal learning
rule for the tempotron problem. In the case that, additionally to the tempotron
setup, we would like to teach the neuron to fire at a particular moment in time, it
is currently known that ReSuMe, with W (s) = E(s) will converge to an optimal
solution at least for the case of one input with one spike and one target output
spike [8].

5 Simulations

In order to verify the assertions presented above, we performed several simula-
tions. We implemented the setup for learning to classify latency patterns, which
was originally used for demonstrating the efficacy of the tempotron learning
rule [1]. The trained neuron must learn to separate p input patterns into two
categories. For each category, the neuron has to have a distinct, characteristic
output. The input patterns are generated randomly and are assigned randomly
to one of the two categories. Each input pattern has a duration T = 500 ms and
consists of one spike for each of the N = 500 afferent synapses of the trained
neuron. The timing of each of these spikes is generated randomly with uniform
distribution between 0 and T . Except where specified, the parameters of the
simulation are as in [1]. The trained neuron is an integrate-and-fire neuron with
the time constant of the membrane decay τ . Each input spike generates an ex-
ponentially decaying current with time constant τs. Thus, for the case that the
neuron has not yet emitted a spike,

ε(t− tfi ) = ε0

[
exp

(
− t− tfi

τ

)
− exp

(
− t− tfi

τs

)]
, (8)

as in [1]. For the results presented here, we use p = 50 input patterns.
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Fig. 1. The number l of learning trials needed for perfect learning of classifying
latency patterns, for various implementation of the learning rule and various
problems. For each rule / setup, averages and standard deviations are computed
over 100 experiments with different, random initial conditions. a) Original tem-
potron learning rule. b) Modified tempotron learning rule (tmax replaced by t1

when the output neuron fires), equivalent to the ReSuMe learning rule with
a = 0 and W (s) = ε(s). c) ReSuMe learning rule for the tempotron setup (with
W (s) = E(s)). d) Learning with ReSuMe of a classification task where, when
the neuron fires, it has to fire at a particular moment in time. e) Learning with
ReSuMe of a classification task where, for both categories, the neuron has to fire
one spike at particular moments in time. See text for details. Inset: zoom over
the results of a), b), c).

In the original tempotron setup, the two categories are named 	 and ⊕
and the trained neuron has to fire no spike for the 	 patterns and one spike,
regardless of its timing, for the ⊕ patterns. Our first simulations implemented
the original tempotron learning rule for this setup and checked whether the
changes suggested by the application of ReSuMe to the tempotron setup affect
the efficacy of learning. In the simulations, we trained the neuron until there
was no error (all patterns were classified correctly) and recorded the number l
of learning trials needed for learning. A trial consists of presentations of each
of the p patterns, followed by applying the changes of wi given by the learning
rule.

We first reproduced learning with the original tempotron rule (Eq. 3; Fig.
1a). We then performed the simulation by replacing tmax in Eq. 3, for the cases
where the output neuron spiked, with the actual timing of the output spike t1.
Thus, we effectively implemented the ReSuMe learning rule with a = 0 and
W (s) = ε(s). The results are presented in Fig. 1b and show that there is no
increase in learning time, for equal performance.



We then ran the simulation by using an exponential learning window, W (s) =
E(s) (Eq. 5), as originally proposed for the ReSuMe rule, with A = 1 and
τE = τ . Again, we can still achieve learning with no errors, and learning time for
this method is even better than for the tempotron (Fig. 1c). This is consistent
with other results obtained in simulations, that have shown that ReSuMe has
better performance with an exponential learning window (E, Eq. 5) than with a
double-exponential learning window (like ε, Eq. 8) [9]. This is, however, somehow
surprising, given current theoretical understanding of ReSuMe: it has been shown
analytically that ReSuMe with W (s) = E(s) converges to the solution only for
one input [8] (but we use here multiple inputs); while the tempotron learning
rule performs gradient descent towards the solution [1].

We then explored the more difficult, but more general and relevant problem
where we remove the artificial shunting of the inputs after the output neuron
fires (thus allowing it to fire more than one spike) but still require the neuron
to learn to fire only one spike for the ⊕ patterns. Thus, there will be one output
spike for the ⊕ patterns not because the number of spikes is restricted artificially
but because the neuron has to adapt its synapses in order to do so. Moreover, we
require the neuron to fire this spike at precisely t̃1 = 400 ms after the beginning of
an input pattern. As previously, the neuron has to fire no spike for	 patterns. For
this, we use the general ReSuMe learning rule, Eq. 6, with a = 0, W (s) = E(s),
A = 1, and τE = τ , and we keep training the neuron until the number of output
spikes is the desired one for each input pattern. We now also have to consider
the dynamics of the trained neuron after it emits a spike. We do this according
to the standard integrate-and-fire model [10], and in this case we have, when the
timing of a presynaptic spike tfi precedes the timing of the latest postsynaptic
spike t̂,

ε(t− tfi ) = ε0 exp

(
− t̂− tfi

τs

)[
exp

(
− t− t̂

τm

)
− exp

(
− t− t̂

τs

)]
, (9)

while when tfi > t̂ the form of ε from Eq. 8 is still valid. We used a reset potential
equal to the rest potential, so there was no refractory kernel. Again, we achieve
learning, and even if the problem is significantly more difficult the learning time
is only about 3 times higher than for the simpler tempotron problem (Fig. 1d).
As it can be seen in Fig. 2a, the time at which the neuron fires after learning in
response to ⊕ patterns is very narrowly distributed around t̃1.

Finally, we tackled the still more difficult problem of having the neuron fire
one spike at t̃1⊕ = 350 ms in response to a ⊕ pattern and one spike at t̃1	 = 450 ms
in response to a 	 pattern, in the same conditions as for the previous simulation.
We still achieve learning, after a larger number of training epochs (Fig. 1e), and
the distribution of the moments at which the neuron fires after learning is again
narrowly distributed around the desired times (Fig. 2b,c).
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Fig. 2. Histograms of the distribution of spike timings of the output neuron, after
learning, when responding to input spike pattern categories. The distribution
contains the responses of the neuron to each pattern within a category (about
p/2 = 250 patterns per category), for each trial, and for 100 trials with random
initial conditions. Bin width is 0.5 ms. a) The neuron has to either fire a spike at
t̃1 = 400 ms in response to one category or not to fire at all. b), c) The neuron
has to fire one spike at t̃1⊕ = 350 ms in response to a ⊕ pattern (b) and one spike
at t̃1	 = 450 ms in response to a 	 pattern (c).

6 Conclusions

We have demonstrated the equivalence between tempotron and ReSuMe, under
certain conditions, and we have shown that ReSuMe is a more general and more
biologically-plausible approach to supervised learning for spiking neurons than
the tempotron. The tempotron learning rule is, in fact, a particular case of the
ReSuMe learning rule for a specific, quite artificial problem. Moreover, we have
shown in simulations that by using the ReSuMe learning rule one can train
neurons to classify input patterns not only by indicating the class by firing or
not firing in a given time interval, but also by firing spikes with precise timings.

If one considers that representing information in the precise spike timings is
relevant, as it was considered for the input spike trains in the tempotron setup,
then the output of spike train classifiers should also be capable of representing
information temporally. Hence general learning rules that are capable of learning
spike times, such as ReSuMe, should be used instead of the tempotron learning
rule for such problems. Having the same type of coding for both input and output
permits using the output of a classifier as the input of another similar classifier,



thus forming networks with higher information processing capabilities. A spiking
classifier with temporally coded output is also important for reservoir computing
[11] when using a spiking reservoir. In this case, one may train a spiking readout
and feed its output back into the reservoir (since information is coded as in the
reservoir), thus improving the computational power of the network [12].

Despite its limitations, the tempotron has been proved quite efficient for
spoken digit recognition, outperforming with only 15 spiking neurons complex
state-of-the-art Hidden Markov Model word recognition systems [13]. This shows
that spiking neural networks are quite powerful, and using appropriate learning
methods for training them might reveal even more of their potential.
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