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Abstract

We show that standard, Hebbian spike-timing dependent plasticity (STDP) in-
duces the precession of the firing phase of neurons in oscillatory networks, while
anti-Hebbian STDP induces phase recession. In networks that are subject to os-
cillatory inhibition, the intensity of excitatory input relative to the inhibitory one
determines whether the phase can precess due to STDP or whether the phase is
fixed. This phenomenon can give a very simple explanation to the experimentally-
observed hippocampal phase precession. Modulation of STDP can lead, through
precession and recession, to the synchronization of the firing of a trained neuron
to a target phase.
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1 Introduction

Spike-timing dependent plasticity (STDP) is the dependence of synaptic changes on
the relative timing of pre- and postsynaptic action potentials, a phenomenon that has
been experimentally observed in biological neural systems (Markram et al., 1997; Bi
and Poo, 1998; Dan and Poo, 2004). The type of STDP that has been mostly studied
is characterized by the potentiation of a synapse when the postsynaptic spike follows
the presynaptic spike within a time window of a few tens of milliseconds, and the
depression of the synapse when the order of the spikes is reversed. This type of STDP is
sometimes called Hebbian, because it is consistent with the original postulate of Hebb
that predicted the strengthening of a synapse when the presynaptic neuron causes the
postsynaptic neuron to fire. Experiments have also found synapses with anti-Hebbian
STDP (also called anti-STDP), where the sign of the changes is reversed, in comparison
to Hebbian STDP (Dan and Poo, 1992; Bell et al., 1997; Egger et al., 1999; Roberts
and Bell, 2002).

Many studies have investigated the computational properties of Hebbian STDP, and
have shown its function in neural homeostasis, unsupervised and supervised learning
(Kempter et al., 1999, 2001; Song et al., 2000; Roberts, 1999; Rao and Sejnowski,
2001; Toyoizumi et al., 2005; Bell and Parrara, 2005; Chechik, 2003; Bohte and Mozer,
2005; Hopfield and Brody, 2004; Legenstein et al., 2005). Anti-Hebbian STDP is,
at a first glance, not as interesting as the Hebbian mechanism, as it leads, by itself,
to an overall depression of the synapses towards zero efficacy (Abbott and Gerstner,
2005). We have recently shown that modulating STDP with a reward signal (i.e., having
both Hebbian and anti-Hebbian STDP) leads to reinforcement learning (Florian, 2005,
2006). None of these studies have specifically investigated the consequences of STDP
in oscillatory networks.

Here we study through computer simulations the effects of Hebbian and anti-Hebbian
STDP in networks of neurons that fire periodically with a common period. This has
biological relevance because there is such rhythmical activity in the brain, for example
the hippocampal theta thythm (Buzsaki, 2002; Buzsaki and Draguhn, 2004). We first
describe our model (Section 2) and then demonstrate some general effects induced by
STDP in oscillatory networks (Section 3). Afterwards we study the interplay between
these effects and oscillatory inhibition (Section 4) and how the effects can be used to
teach a neuron to fire at a given phase (Section 5).

2 Methods

We study an integrate-and-fire neuron driven by N, excitatory and A; inhibitory input
neurons. The excitatory synapses are plastic, while the inhibitory ones are static. This
setup is similar to the one in (Song et al., 2000). We model the network’s rhythmic ac-
tivity by considering that input neurons fire periodically with a common period 7' = 125
ms (corresponding to the 8 Hz theta hippocampal rhythm). In the brain, neurons some-
times skip cycles, while still firing at a constant phase, but we ignore this possibility
here, for the sake of simplicity, and consider that each of the input neurons fires once
per period, at a predetermined phase ¢. These phases are generated randomly at the



beginning of the experiments. The phases of excitatory neurons are generated uni-
formly between 0 and 27. In experiments where we use inhibitory neurons, the total
inhibition is considered to be modulated by the global oscillation, as in other models
of the hippocampal theta rhythm (Tsodyks et al., 1996; Mehta et al., 2002), and thus
their phases are generated with a probability density p(¢y) = [cos(¢x) + 1]/(27) (see
also Fig. 2e-g).

The dynamics of the postsynaptic integrate-and-fire neuron is given by the follow-
ing equation:
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where V is the membrane potential, Vo =-70 mV is the resting potential, 7,, =20 ms
is the decay time constant, g, are synaptic conductances and Ej, are reversal potentials.
When the membrane potential reaches a threshold of -54 mV, the neuron fires and V
is reset to -60 mV. We consider E;=0 mV for excitatory synapses and E=-70 mV for
inhibitory ones (parameters from (Song et al., 2000; Troyer and Miller, 1997)).

Each presynaptic spike determines an instantaneous rise in the synaptic conduc-
tance, which decays then exponentially. Thus, the dynamics of the synaptic conduc-

tances is given by
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where 7, = 5 ms, g; are the peak synaptic conductances, and ® () represents the firing
train of input neuron k as a sum of Dirac functions:
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For inhibitory synapses, g; is constant and is generated randomly at the beginning
of the experiment, with an uniform distribution, between 0 and g},,.. For excitatory
synapses, gj is also initialized randomly between 0 and g;,,,, but varies in time due
to STDP. As in previous studies (Song et al., 2000; Abbott and Nelson, 2000), we
use an exponential dependence of plasticity on the relative spike timings, we consider
that the effect of different spike pairs is additive, and we limit the range of possible
synaptic strengths with hard bounds, between 0 and g;,,.. To model Hebbian as well
as anti-Hebbian STDP, we consider that plasticity is modulated by a variable r(¢) that
can be positive as well as negative. Hence, the dynamics of the excitatory synaptic
conductances is given by
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with the additional hard bounds. We noted with .%] the set of firing times tkf previous
to ¢ of input neuron k, and .%) is the analogue for the postsynaptic neuron. ®(z) is the



spike train of the postsynaptic neuron; A1 are constant parameters that determine the
magnitude of synaptic changes, Ay = 0.005 g,,.» A— = —A4; T+ are the decay time
constants of the exponential STDP windows, 7, = 7 = 20 ms.

Following (Song et al., 2000), we use a set of variables P,:r that track the influ-
ence of presynaptic spikes and F, that tracks the influence of postsynaptic spikes on
the synapses. These variables simplify the simulation and may also have biochemical
counterparts in biological neurons. We then have:
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In some of the experiments, we use a homeostatic mechanism (Turrigiano and Nel-
son, 2004) that scales up or down the synapses in order to keep the postsynaptic firing
rate constant, at one spike per oscillation period 7. We estimate the postsynaptic firing
rate v by using a leaky accumulator (equivalent to an integration with an exponential

kernel),
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with 7, = 500 ms. We then scale all excitatory synapses according to
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with & = 0.04. This mechanism is applied additionally to the plasticity mechanisms
already mentioned.
The network is simulated with a timestep of 0.5 ms.

3 Precession and recession

We first consider a setup with N, = 1000 excitatory input neurons and no inhibitory
input. We use g3, = 0.014 and no homeostasis. If we set 7(¢) = 1, i.e. Hebbian STDP,
and let the network run, we observe that the phase of the postsynaptic spikes relative to
the input oscillation precesses, i.e. has a tendency to occur earlier in the cycle (Fig. 1a).
This is consistent with previous observations that STDP tends to reduce the latency of
postsynaptic firing in response to the same stimulus (input) (Song et al., 2000; Gerstner
and Kistler, 2002) and that STDP allows the postsynaptic neuron to predict its input
(Rao and Sejnowski, 2001). These properties of STDP also make inputs that fire before
the postsynaptic neuron to become more and more effective in causing the postsynaptic
neuron to fire, and eventually increase the total excitation that this neuron receives. This
means that the neuron may start to fire more spikes per period, a phenomenon that can
be seen in Fig. la.
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Figure 1: The evolution in time of the phase of postsynaptic spikes relative to the
input oscillation. The graphs illustrate the first 1000 periods of the experiments. All
experiments start with identical conditions. a), ¢): Hebbian STDP. b), d): Anti-Hebbian
STDP. a), b): Without homeostasis. ¢), d): With homeostasis.

If we set r(t) = —1, i.e. we have anti-Hebbian STDP, we observe the opposite,
namely that the phase of the postsynaptic spikes recesses (has a tendency to occur later
in the cycle), and that the excitation that the neuron receives diminishes, eventually
leading the neuron to stop firing (Fig. 1b). This is consistent with the previous obser-
vation that anti-Hebbian STDP leads to a global weakening of the synapses (Abbott
and Gerstner, 2005).

However, if we also introduce the previously mentioned homeostatic mechanism
that keeps the postsynaptic neuron firing once per period, we observe that the preces-
sion/recession corresponding to Hebbian/anti-Hebbian STDP becomes a stable behav-
ior of the neuron (Fig. 1c,d).

4 Precession control through oscillatory inhibition

We now add to the previously described setup N; = 1000 inhibitory input neurons,
that provide an oscillatory inhibitory input current to the postsynaptic neuron (each
inhibitory neuron fires once per cycle, and the number of neurons that fire at a par-
ticular phase oscillates as a function of phase). We use r(¢) = 1, g}, = 0.015 and
homeostasis. The phase precession is not disturbed by the oscillatory inhibition (Fig.
2a). Precession is stopped, however, by a much stronger inhibition, for example if we
reduce the number of excitatory inputs from 1000 to 500 (Fig. 2b), as the neuron can
fire only at phases where excitation overcomes inhibition.

This means that by modulating the ratio of excitation versus oscillatory inhibition,
in conjunction with STDP, we may switch from precession to a state of constant phase
firing. This is illustrated in Fig. 2c-d, where, after the firing phase stabilizes because
oscillating inhibition dominates excitation, we increase the excitation received by the
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Figure 2: a)-c) Effect of oscillatory inhibition on the dynamics of the phase of post-
synaptic spikes relative to the input rhythm. All experiments start with identical con-
ditions. a) 1000 excitatory inputs, 1000 inhibitory inputs. b) 500 excitatory inputs,
1000 inhibitory inputs. ¢) 500—1000 excitatory inputs, 1000 inhibitory inputs. d) The
evolution in time of the number of the excitatory inputs for the experiment presented
in c). e)-f) Intensity of the total excitatory and, respectively, inhibitory inputs (number
of spikes per time unit) as a function of phase. The smooth line represents the average
number of input spikes per timestep corresponding to the probability with which they
were generated, the rugged line represents the actual histogram of the input spikes as
a function of phase, corresponding to the experiments illustrated here. e) Excitatory
input intensity for the experiment presented in a). f) Excitatory input intensity for the
experiment presented in b). g) Inhibitory input intensity for all experiments. In the
experiment presented in c), the input intensity varies between the one presented in f)
and the one presented in e).
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Figure 3: The phase @ precesses if r(¢) > 0 and recesses if r(¢) < 0, as indicated by
the arrows. If 7(r) = cos(¢(t) + 6), the phase converges to ¢o = 37/2 — 6 because this
is a stable point for the dynamics of ¢y; ¢o = 7/2 — 6 is an unstable equilibrium point.

output neuron, by adding extra excitatory inputs. Until #; = 12007, the postsynaptic
neuron is driven by 500 excitatory neurons. From #; to t, = 15007, we constantly
add new excitatory inputs to the postsynaptic neuron until their number reaches 1000
at 1. With greater excitation, the phase starts to precess. From #, to t3 = 18007,
we gradually remove the newly added excitatory inputs; excitation decreases and then
phase stabilizes again to a value close to the one previous to the increase in excitation.

This very simple model is thus capable to explain the basic features of hippocampal
phase precession. It has been observed that when a rat moves through the receptive field
of a place cell, the firing rate of the neuron correlates with the position in the place field,
and the firing phase of the neuron precesses as the animal traverses the place field. The
initial phase at which the neuron starts firing when the animal enters the place field is
constant for every traversal of the field (O’Keefe and Recce, 1993). The simple model
presented here is consistent with these observations: as the excitation of the place cell
increases because the animal enters into its receptive field, its firing phase precesses
simply because of STDP and because excitation overcomes the phase locking by the
oscillatory inhibition.

Among the many computational models that tried to explain phase precession, only
two others used STDP. The first one used STDP to explain the skewness of the place
fields, which, at its turn, explained phase precession, through interaction with the in-
hibitory oscillation (Mehta et al., 2000). The second one takes from STDP only the
idea of temporally asymmetric interactions between neurons, as it uses neurons with
continuous activations instead of spiking neurons (Scarpetta and Marinaro, 2005). The
model presented here is much simpler than these previous models, yet it captures the
essential features of hippocampal phase precession.

S Controlling the firing phase by modulating STDP

Since the firing phase can be manipulated by STDP and anti-STDP, it is straightforward
to devise a mechanism for moving it to a target phase, by modulating STDP. Modula-
tion of STDP by a global reward signal proved to be a robust reinforcement learning



mechanism for generic spiking neural networks and could be implemented in the brain
by a neuromodulator (Florian, 2005, 2006). Here we may use a similar modulation, but
with a form that depends on the target phase at which we want the postsynaptic neuron
to fire, instead of an external reward.

For example, if the variable r(¢) that modulates STDP oscillates as a function of
the input oscillation phase, with the same period, and the STDP temporal constants 74
are smaller than the oscillation period, the output neuron will always decrease its phase
if the phase is in certain intervals, and increase it in others. If an oscillatory r(z) is a
continuous function of input oscillation phase ¢ = 27 ¢/T, and has both positive and
negative values, the phase of the postsynaptic neuron will have at least two points of
equilibrium (r = 0), among which one will be stable and one unstable. For example,
if r(z) = cos(@(r) + 0), the equilibrium point will be ¢g = 37/2 — 0 (see Fig. 3). The
firing phase of a postsynaptic neuron with synapses featuring STDP modulated by an
r(t) of this form will thus move to the phase of stable equilibrium. This means that
we can train a neuron or a population of (independent) neurons to fire at a particular
phase by using STDP in conjunction to an appropriate form of r(¢). The efficacy of
this approach is illustrated in Fig. 4. The neuron learns the target firing phase within
200 periods (25 s). The same signal 7(¢) may train an arbitrary number of neurons to
fire at the same phase, thus synchronizing them.

Alternatively, r(¢) need not to vary continuously during a cycle, as a function of
the global oscillation phase, but may vary when the postsynaptic neuron fires, as a
function of the difference between its phase ¢y(7) at which it last fired and the target
phase ¢, For example, if r(r) = sin(¢o(t) — ¢;"**), we achieve a convergence of
the postsynaptic phase to the target phase similar to the one obtained with the previous
method (data not shown).

Unfortunately none of these two methods of synchronizing neurons seems to be
biologically plausible. The first method requires a neuromodulator with a fast temporal
variation, and the second requires the neuromodulator to represent the error between
the actual phase and the target phase. However, these methods may be useful in some
applications for training artificial spiking neural networks.

6 Conclusion

We have shown that, if a neuron is driven by periodically-firing excitatory inputs, its
phase will precess if the synapses connecting it to the input feature Hebbian STDP,
and will recess if the synapses feature anti-Hebbian STDP. If there exists a homeostatic
mechanism that enforces the neuron to fire once per cycle, the precession or recession
will be stable. A strong oscillatory inhibition may stop the precession caused by STDP
and lock the firing phase. If the ratio of excitation versus inhibition varies in time, firing
may alternate between periods of precession and of stable phase. This phenomenon
can explain in a very simple fashion the hippocampal phase precession. Precession and
recession may be combined by modulating STDP to train neurons to fire at a given
target phase.
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Figure 4: Learning to fire at a target phase (¢o = 37/2) with modulated STDP. a) Su-
perposition of the spikes emitted by the postsynaptic neuron in 100 trials, each having
different, random, initial conditions. b) The distribution of the phases of the postsynap-
tic neuron after 200 periods of training (data from the same trials). It can be seen that
in most cases the phase converges towards the stable equilibrium point 37 /2, while in
very few cases it converges towards the unstable equilibrium point /2.
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